Add first order homogenization functions and upload README file
This commit is contained in:
parent
e04451835e
commit
7933b90048
|
@ -0,0 +1 @@
|
|||
.DS_Store
|
|
@ -0,0 +1,131 @@
|
|||
import numpy as np
|
||||
|
||||
def solve_poisson_fft_tilde(f_tilde, Qx, Qy):
|
||||
"""
|
||||
Solve the Poisson equation in Fourier space directly.
|
||||
"""
|
||||
k2 = Qx**2 + Qy**2
|
||||
k2[0, 0] = 1 # avoid division by zero
|
||||
u_tilde = -f_tilde / k2 # Attention, here is for solving the Poisson equation with \Delta u + f = 0, so here the f_tilde could be right hand side of the Poisson equation
|
||||
u_tilde[0, 0] = 0 # set the zero-frequency component to zero
|
||||
return u_tilde
|
||||
|
||||
def fft_gradient(u_tilde, Qx, Qy):
|
||||
"""
|
||||
For a given u_tilde in Fourier space, compute its gradient in real space.
|
||||
"""
|
||||
ux_tilde = 1j * Qx * u_tilde
|
||||
uy_tilde = 1j * Qy * u_tilde
|
||||
ux = np.fft.ifft2(ux_tilde).real
|
||||
uy = np.fft.ifft2(uy_tilde).real
|
||||
return ux, uy
|
||||
|
||||
def divergence_to_tilde(fx, fy, Qx, Qy):
|
||||
"""
|
||||
Compute the divergence of a vector field (fx, fy) in real space, then return its Fourier transform.
|
||||
"""
|
||||
fx_tilde = np.fft.fft2(fx)
|
||||
fy_tilde = np.fft.fft2(fy)
|
||||
div_tilde = 1j * Qx * fx_tilde + 1j * Qy * fy_tilde
|
||||
return div_tilde
|
||||
|
||||
def solve_microfluctuation_poisson(G, G_0, f, Qx, Qy, epsilon=1e-8, max_iter=5000):
|
||||
"""
|
||||
To solve the equation: ∇·(G∇N) + f = 0
|
||||
With fixed point iteration: G_0 ∇²N + ∇·((G-G_0)∇N) + f = 0
|
||||
Solve N^(0) with ∇²N = -f/G_0 as initial guess
|
||||
"""
|
||||
f_tilde = np.fft.fft2(f)
|
||||
|
||||
N_init_tilde = solve_poisson_fft_tilde(-f_tilde / G_0, Qx, Qy)
|
||||
N_tilde = N_init_tilde.copy()
|
||||
|
||||
for _ in range(max_iter): # The loop simply repeats the loop body max_iter times, without requiring a count value in each loop iteration.
|
||||
# Compute the gradient of N in real space
|
||||
Nx, Ny = fft_gradient(N_tilde, Qx, Qy)
|
||||
# Compute (G-G_0)*grad(u) in real space, then compute its divergence in Fourier space
|
||||
temp_x = (G - G_0)*Nx
|
||||
temp_y = (G - G_0)*Ny
|
||||
f_n_tilde = divergence_to_tilde(temp_x, temp_y, Qx, Qy)
|
||||
|
||||
# Slove the Poisson equation in Fourier space
|
||||
# G_0 ΔN = -f - f_n
|
||||
# ΔN = -(f_n + f)/G_0
|
||||
N_next_tilde = solve_poisson_fft_tilde(-(f_n_tilde + f_tilde)/G_0, Qx, Qy)
|
||||
# Check the convergence
|
||||
if np.linalg.norm(np.fft.ifft2(N_next_tilde - N_tilde)) < epsilon:
|
||||
N_tilde = N_next_tilde
|
||||
break
|
||||
N_tilde = N_next_tilde
|
||||
|
||||
N = np.fft.ifft2(N_tilde).real
|
||||
return N
|
||||
|
||||
|
||||
def homogeneous_effective_modulus(G, G_0, Qx, Qy, n, m):
|
||||
# For N1_1:
|
||||
# f1 = -∇·(G(y)*e_1) = -∇·(G(y), 0)
|
||||
# ∇·(G(y),0) = dG/dx
|
||||
dG_dx = np.fft.ifft2(1j * Qx * np.fft.fft2(G)).real
|
||||
f1 = dG_dx
|
||||
|
||||
N1_1 = solve_microfluctuation_poisson(G, G_0, f1, Qx, Qy)
|
||||
|
||||
# For N1_2:
|
||||
# f2 = -∇·(G(y)*e_2) = -∇·(0, G(y))
|
||||
# ∇·(0,G(y)) = dG/dy
|
||||
dG_dy = np.fft.ifft2(1j * Qy * np.fft.fft2(G)).real
|
||||
f2 = dG_dy
|
||||
|
||||
N1_2 = solve_microfluctuation_poisson(G, G_0, f2, Qx, Qy)
|
||||
|
||||
# C_0 = ∫ G(y) [∇N1(y) + I] dy
|
||||
# N1 = [N1_1, N1_2]
|
||||
|
||||
N1_1_tilde = np.fft.fft2(N1_1)
|
||||
N1_2_tilde = np.fft.fft2(N1_2)
|
||||
|
||||
N1_1x, N1_1y = fft_gradient(N1_1_tilde, Qx, Qy)
|
||||
N1_2x, N1_2y = fft_gradient(N1_2_tilde, Qx, Qy)
|
||||
|
||||
# ∇N1 is [[N1_1x, N1_1y],
|
||||
# [N1_2x, N1_2y]]
|
||||
# ∇N1 + I is [[N1_1x+1, N1_1y ],
|
||||
# [N1_2x , N1_2y+1]]
|
||||
N1_grad_plus_I = np.zeros((n,m,2,2))
|
||||
N1_grad_plus_I[:,:,0,0] = N1_1x + 1.0
|
||||
N1_grad_plus_I[:,:,0,1] = N1_1y
|
||||
N1_grad_plus_I[:,:,1,0] = N1_2x
|
||||
N1_grad_plus_I[:,:,1,1] = N1_2y + 1.0
|
||||
|
||||
# Compute C_0 = ∫ G(y)*[∇N1+I] dy
|
||||
C0 = np.zeros((2,2))
|
||||
for i in range(2):
|
||||
for j in range(2):
|
||||
# Integral of unit cell, the area of the unit cell is 1
|
||||
C0[i,j] = np.mean(G * N1_grad_plus_I[:,:,i,j])
|
||||
|
||||
return C0, N1_1, N1_2
|
||||
|
||||
# Define gradient function to compute ∇v0
|
||||
def fft_gradient_2d(u_tilde, Qx, Qy):
|
||||
ux_tilde = (1j * Qx) * u_tilde
|
||||
uy_tilde = (1j * Qy) * u_tilde
|
||||
ux = np.fft.ifft2(ux_tilde).real
|
||||
uy = np.fft.ifft2(uy_tilde).real
|
||||
return ux, uy
|
||||
|
||||
|
||||
def first_order_homogenization(F_macro, Qx_macro, Qy_macro, C0, N1_1, N1_2, eta):
|
||||
F_macro_tilde = np.fft.fft2(F_macro)
|
||||
denominator = (C0[0,0]*Qx_macro**2 + (C0[0,1]+C0[1,0])*Qx_macro*Qy_macro + C0[1,1]*Qy_macro**2) #Deducing process is in the appendix
|
||||
|
||||
denominator[0,0] = 1.0 # avoid division by zero
|
||||
v0_tilde = F_macro_tilde / denominator # v0_tilde = -F_tilde / denominator !!! there should not be a minus sign here
|
||||
v0_tilde[0,0] = 0.0
|
||||
v0 = np.fft.ifft2(v0_tilde).real
|
||||
|
||||
v0_ux, v0_uy = fft_gradient_2d(np.fft.fft2(v0), Qx_macro, Qy_macro)
|
||||
# u(x) ≈ v_0(x) + η N_1(x/η) · ∇v_0(x)
|
||||
u = v0 + eta * (N1_1 * v0_ux + N1_2 * v0_uy)
|
||||
return u
|
|
@ -1,3 +1,3 @@
|
|||
# Doctoral_projects_of_Zichen_Li
|
||||
|
||||
This repo contains projects of Zichen Li during his doctoral study
|
||||
This repo contains projects of Zichen Li during his doctoral study. His doctoral study starts from 01/11/2024, the topic is Contacts rugueux hétérogènes : du micro au macro. His work is under supervise of Patrick Ballard, Lucas Frérot and Renald Brenner.
|
Loading…
Reference in New Issue