From 7933b9004810bef46490be6b9ade66c563c92b1a Mon Sep 17 00:00:00 2001 From: Zichen Date: Thu, 19 Dec 2024 18:54:25 +0100 Subject: [PATCH] Add first order homogenization functions and upload README file --- .gitignore | 1 + .../first_order_homogenization.py | 131 ++++++++++++++++++ README.md | 2 +- 3 files changed, 133 insertions(+), 1 deletion(-) create mode 100644 .gitignore create mode 100644 Homogenization/first-order-homogenization/first_order_homogenization.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..e43b0f9 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.DS_Store diff --git a/Homogenization/first-order-homogenization/first_order_homogenization.py b/Homogenization/first-order-homogenization/first_order_homogenization.py new file mode 100644 index 0000000..32e45af --- /dev/null +++ b/Homogenization/first-order-homogenization/first_order_homogenization.py @@ -0,0 +1,131 @@ +import numpy as np + +def solve_poisson_fft_tilde(f_tilde, Qx, Qy): + """ + Solve the Poisson equation in Fourier space directly. + """ + k2 = Qx**2 + Qy**2 + k2[0, 0] = 1 # avoid division by zero + u_tilde = -f_tilde / k2 # Attention, here is for solving the Poisson equation with \Delta u + f = 0, so here the f_tilde could be right hand side of the Poisson equation + u_tilde[0, 0] = 0 # set the zero-frequency component to zero + return u_tilde + +def fft_gradient(u_tilde, Qx, Qy): + """ + For a given u_tilde in Fourier space, compute its gradient in real space. + """ + ux_tilde = 1j * Qx * u_tilde + uy_tilde = 1j * Qy * u_tilde + ux = np.fft.ifft2(ux_tilde).real + uy = np.fft.ifft2(uy_tilde).real + return ux, uy + +def divergence_to_tilde(fx, fy, Qx, Qy): + """ + Compute the divergence of a vector field (fx, fy) in real space, then return its Fourier transform. + """ + fx_tilde = np.fft.fft2(fx) + fy_tilde = np.fft.fft2(fy) + div_tilde = 1j * Qx * fx_tilde + 1j * Qy * fy_tilde + return div_tilde + +def solve_microfluctuation_poisson(G, G_0, f, Qx, Qy, epsilon=1e-8, max_iter=5000): + """ + To solve the equation: ∇·(G∇N) + f = 0 + With fixed point iteration: G_0 ∇²N + ∇·((G-G_0)∇N) + f = 0 + Solve N^(0) with ∇²N = -f/G_0 as initial guess + """ + f_tilde = np.fft.fft2(f) + + N_init_tilde = solve_poisson_fft_tilde(-f_tilde / G_0, Qx, Qy) + N_tilde = N_init_tilde.copy() + + for _ in range(max_iter): # The loop simply repeats the loop body max_iter times, without requiring a count value in each loop iteration. + # Compute the gradient of N in real space + Nx, Ny = fft_gradient(N_tilde, Qx, Qy) + # Compute (G-G_0)*grad(u) in real space, then compute its divergence in Fourier space + temp_x = (G - G_0)*Nx + temp_y = (G - G_0)*Ny + f_n_tilde = divergence_to_tilde(temp_x, temp_y, Qx, Qy) + + # Slove the Poisson equation in Fourier space + # G_0 ΔN = -f - f_n + # ΔN = -(f_n + f)/G_0 + N_next_tilde = solve_poisson_fft_tilde(-(f_n_tilde + f_tilde)/G_0, Qx, Qy) + # Check the convergence + if np.linalg.norm(np.fft.ifft2(N_next_tilde - N_tilde)) < epsilon: + N_tilde = N_next_tilde + break + N_tilde = N_next_tilde + + N = np.fft.ifft2(N_tilde).real + return N + + +def homogeneous_effective_modulus(G, G_0, Qx, Qy, n, m): + # For N1_1: + # f1 = -∇·(G(y)*e_1) = -∇·(G(y), 0) + # ∇·(G(y),0) = dG/dx + dG_dx = np.fft.ifft2(1j * Qx * np.fft.fft2(G)).real + f1 = dG_dx + + N1_1 = solve_microfluctuation_poisson(G, G_0, f1, Qx, Qy) + + # For N1_2: + # f2 = -∇·(G(y)*e_2) = -∇·(0, G(y)) + # ∇·(0,G(y)) = dG/dy + dG_dy = np.fft.ifft2(1j * Qy * np.fft.fft2(G)).real + f2 = dG_dy + + N1_2 = solve_microfluctuation_poisson(G, G_0, f2, Qx, Qy) + + # C_0 = ∫ G(y) [∇N1(y) + I] dy + # N1 = [N1_1, N1_2] + + N1_1_tilde = np.fft.fft2(N1_1) + N1_2_tilde = np.fft.fft2(N1_2) + + N1_1x, N1_1y = fft_gradient(N1_1_tilde, Qx, Qy) + N1_2x, N1_2y = fft_gradient(N1_2_tilde, Qx, Qy) + + # ∇N1 is [[N1_1x, N1_1y], + # [N1_2x, N1_2y]] + # ∇N1 + I is [[N1_1x+1, N1_1y ], + # [N1_2x , N1_2y+1]] + N1_grad_plus_I = np.zeros((n,m,2,2)) + N1_grad_plus_I[:,:,0,0] = N1_1x + 1.0 + N1_grad_plus_I[:,:,0,1] = N1_1y + N1_grad_plus_I[:,:,1,0] = N1_2x + N1_grad_plus_I[:,:,1,1] = N1_2y + 1.0 + + # Compute C_0 = ∫ G(y)*[∇N1+I] dy + C0 = np.zeros((2,2)) + for i in range(2): + for j in range(2): + # Integral of unit cell, the area of the unit cell is 1 + C0[i,j] = np.mean(G * N1_grad_plus_I[:,:,i,j]) + + return C0, N1_1, N1_2 + +# Define gradient function to compute ∇v0 +def fft_gradient_2d(u_tilde, Qx, Qy): + ux_tilde = (1j * Qx) * u_tilde + uy_tilde = (1j * Qy) * u_tilde + ux = np.fft.ifft2(ux_tilde).real + uy = np.fft.ifft2(uy_tilde).real + return ux, uy + + +def first_order_homogenization(F_macro, Qx_macro, Qy_macro, C0, N1_1, N1_2, eta): + F_macro_tilde = np.fft.fft2(F_macro) + denominator = (C0[0,0]*Qx_macro**2 + (C0[0,1]+C0[1,0])*Qx_macro*Qy_macro + C0[1,1]*Qy_macro**2) #Deducing process is in the appendix + + denominator[0,0] = 1.0 # avoid division by zero + v0_tilde = F_macro_tilde / denominator # v0_tilde = -F_tilde / denominator !!! there should not be a minus sign here + v0_tilde[0,0] = 0.0 + v0 = np.fft.ifft2(v0_tilde).real + + v0_ux, v0_uy = fft_gradient_2d(np.fft.fft2(v0), Qx_macro, Qy_macro) + # u(x) ≈ v_0(x) + η N_1(x/η) · ∇v_0(x) + u = v0 + eta * (N1_1 * v0_ux + N1_2 * v0_uy) + return u \ No newline at end of file diff --git a/README.md b/README.md index 06876f7..eb8bf26 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,3 @@ # Doctoral_projects_of_Zichen_Li -This repo contains projects of Zichen Li during his doctoral study \ No newline at end of file +This repo contains projects of Zichen Li during his doctoral study. His doctoral study starts from 01/11/2024, the topic is Contacts rugueux hétérogènes : du micro au macro. His work is under supervise of Patrick Ballard, Lucas Frérot and Renald Brenner. \ No newline at end of file