Add first order homogenization functions and upload README file

This commit is contained in:
Zichen LI 2024-12-19 18:54:25 +01:00
parent e04451835e
commit 7933b90048
3 changed files with 133 additions and 1 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
.DS_Store

View File

@ -0,0 +1,131 @@
import numpy as np
def solve_poisson_fft_tilde(f_tilde, Qx, Qy):
"""
Solve the Poisson equation in Fourier space directly.
"""
k2 = Qx**2 + Qy**2
k2[0, 0] = 1 # avoid division by zero
u_tilde = -f_tilde / k2 # Attention, here is for solving the Poisson equation with \Delta u + f = 0, so here the f_tilde could be right hand side of the Poisson equation
u_tilde[0, 0] = 0 # set the zero-frequency component to zero
return u_tilde
def fft_gradient(u_tilde, Qx, Qy):
"""
For a given u_tilde in Fourier space, compute its gradient in real space.
"""
ux_tilde = 1j * Qx * u_tilde
uy_tilde = 1j * Qy * u_tilde
ux = np.fft.ifft2(ux_tilde).real
uy = np.fft.ifft2(uy_tilde).real
return ux, uy
def divergence_to_tilde(fx, fy, Qx, Qy):
"""
Compute the divergence of a vector field (fx, fy) in real space, then return its Fourier transform.
"""
fx_tilde = np.fft.fft2(fx)
fy_tilde = np.fft.fft2(fy)
div_tilde = 1j * Qx * fx_tilde + 1j * Qy * fy_tilde
return div_tilde
def solve_microfluctuation_poisson(G, G_0, f, Qx, Qy, epsilon=1e-8, max_iter=5000):
"""
To solve the equation: ·(GN) + f = 0
With fixed point iteration: G_0 ²N + ·((G-G_0)N) + f = 0
Solve N^(0) with ²N = -f/G_0 as initial guess
"""
f_tilde = np.fft.fft2(f)
N_init_tilde = solve_poisson_fft_tilde(-f_tilde / G_0, Qx, Qy)
N_tilde = N_init_tilde.copy()
for _ in range(max_iter): # The loop simply repeats the loop body max_iter times, without requiring a count value in each loop iteration.
# Compute the gradient of N in real space
Nx, Ny = fft_gradient(N_tilde, Qx, Qy)
# Compute (G-G_0)*grad(u) in real space, then compute its divergence in Fourier space
temp_x = (G - G_0)*Nx
temp_y = (G - G_0)*Ny
f_n_tilde = divergence_to_tilde(temp_x, temp_y, Qx, Qy)
# Slove the Poisson equation in Fourier space
# G_0 ΔN = -f - f_n
# ΔN = -(f_n + f)/G_0
N_next_tilde = solve_poisson_fft_tilde(-(f_n_tilde + f_tilde)/G_0, Qx, Qy)
# Check the convergence
if np.linalg.norm(np.fft.ifft2(N_next_tilde - N_tilde)) < epsilon:
N_tilde = N_next_tilde
break
N_tilde = N_next_tilde
N = np.fft.ifft2(N_tilde).real
return N
def homogeneous_effective_modulus(G, G_0, Qx, Qy, n, m):
# For N1_1:
# f1 = -∇·(G(y)*e_1) = -∇·(G(y), 0)
# ∇·(G(y),0) = dG/dx
dG_dx = np.fft.ifft2(1j * Qx * np.fft.fft2(G)).real
f1 = dG_dx
N1_1 = solve_microfluctuation_poisson(G, G_0, f1, Qx, Qy)
# For N1_2:
# f2 = -∇·(G(y)*e_2) = -∇·(0, G(y))
# ∇·(0,G(y)) = dG/dy
dG_dy = np.fft.ifft2(1j * Qy * np.fft.fft2(G)).real
f2 = dG_dy
N1_2 = solve_microfluctuation_poisson(G, G_0, f2, Qx, Qy)
# C_0 = ∫ G(y) [∇N1(y) + I] dy
# N1 = [N1_1, N1_2]
N1_1_tilde = np.fft.fft2(N1_1)
N1_2_tilde = np.fft.fft2(N1_2)
N1_1x, N1_1y = fft_gradient(N1_1_tilde, Qx, Qy)
N1_2x, N1_2y = fft_gradient(N1_2_tilde, Qx, Qy)
# ∇N1 is [[N1_1x, N1_1y],
# [N1_2x, N1_2y]]
# ∇N1 + I is [[N1_1x+1, N1_1y ],
# [N1_2x , N1_2y+1]]
N1_grad_plus_I = np.zeros((n,m,2,2))
N1_grad_plus_I[:,:,0,0] = N1_1x + 1.0
N1_grad_plus_I[:,:,0,1] = N1_1y
N1_grad_plus_I[:,:,1,0] = N1_2x
N1_grad_plus_I[:,:,1,1] = N1_2y + 1.0
# Compute C_0 = ∫ G(y)*[∇N1+I] dy
C0 = np.zeros((2,2))
for i in range(2):
for j in range(2):
# Integral of unit cell, the area of the unit cell is 1
C0[i,j] = np.mean(G * N1_grad_plus_I[:,:,i,j])
return C0, N1_1, N1_2
# Define gradient function to compute ∇v0
def fft_gradient_2d(u_tilde, Qx, Qy):
ux_tilde = (1j * Qx) * u_tilde
uy_tilde = (1j * Qy) * u_tilde
ux = np.fft.ifft2(ux_tilde).real
uy = np.fft.ifft2(uy_tilde).real
return ux, uy
def first_order_homogenization(F_macro, Qx_macro, Qy_macro, C0, N1_1, N1_2, eta):
F_macro_tilde = np.fft.fft2(F_macro)
denominator = (C0[0,0]*Qx_macro**2 + (C0[0,1]+C0[1,0])*Qx_macro*Qy_macro + C0[1,1]*Qy_macro**2) #Deducing process is in the appendix
denominator[0,0] = 1.0 # avoid division by zero
v0_tilde = F_macro_tilde / denominator # v0_tilde = -F_tilde / denominator there should not be a minus sign here
v0_tilde[0,0] = 0.0
v0 = np.fft.ifft2(v0_tilde).real
v0_ux, v0_uy = fft_gradient_2d(np.fft.fft2(v0), Qx_macro, Qy_macro)
# u(x) ≈ v_0(x) + η N_1(x/η) · ∇v_0(x)
u = v0 + eta * (N1_1 * v0_ux + N1_2 * v0_uy)
return u

View File

@ -1,3 +1,3 @@
# Doctoral_projects_of_Zichen_Li
This repo contains projects of Zichen Li during his doctoral study
This repo contains projects of Zichen Li during his doctoral study. His doctoral study starts from 01/11/2024, the topic is Contacts rugueux hétérogènes : du micro au macro. His work is under supervise of Patrick Ballard, Lucas Frérot and Renald Brenner.