Compare commits

...

5 Commits
main ... main

8 changed files with 1307 additions and 0 deletions

143
.gitignore vendored Normal file
View File

@ -0,0 +1,143 @@
# Created by https://www.toptal.com/developers/gitignore/api/python
# Edit at https://www.toptal.com/developers/gitignore?templates=python
# --------------------
# Python
# --------------------
__pycache__/
*.py[cod]
*.pyo
*.pyd
*.so
*$py.class
*.sage.py
# --------------------
# Packaging / builds
# --------------------
.Python
build/
dist/
develop-eggs/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
share/python-wheels/
var/
wheels/
*.egg
*.egg-info/
.installed.cfg
MANIFEST
*.manifest
*.spec
# --------------------
# Logs / caches / temp
# --------------------
*.log
*.tmp
*.temp
*.out
pip-log.txt
pip-delete-this-directory.txt
.cache
.hypothesis/
.pytest_cache/
.tox/
.nox/
.coverage
.coverage.*
*.cover
*.py,cover
cover/
htmlcov/
# --------------------
# Databases / translations
# --------------------
*.mo
*.pot
db.sqlite3
db.sqlite3-journal
# --------------------
# Framework / tool artifacts
# --------------------
local_settings.py
instance/
.webassets-cache
.scrapy
docs/_build/
.pybuilder/
target/
celerybeat-schedule
celerybeat.pid
/site
# --------------------
# Virtual environments
# --------------------
JAX-venv/
.venv/
venv/
env/
ENV/
.env
env.bak/
venv.bak/
# --------------------
# Python packaging helpers
# --------------------
.pdm.toml
poetry.toml
__pypackages__/
# --------------------
# Notebooks / REPL
# --------------------
.ipynb_checkpoints/
*.nb.py
profile_default/
ipython_config.py
# --------------------
# Type checking / analysis
# --------------------
.mypy_cache/
.dmypy.json
dmypy.json
.pyre/
.pytype/
.ruff_cache/
pyrightconfig.json
# --------------------
# Editors / IDEs
# --------------------
.vscode/
.history/
*.code-workspace
.spyderproject
.spyproject
.ropeproject
# --------------------
# Operating system
# --------------------
.DS_Store
Thumbs.db
# --------------------
# Editor temp files
# --------------------
*.swp
*.swo
*~

View File

@ -1 +1,2 @@
Lucas Frérot <lucas.frerot@sorbonne-universite.fr> Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, F-75005 Paris, France Lucas Frérot <lucas.frerot@sorbonne-universite.fr> Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
Zichen Li <zichen.li@sorbonne-universite.fr> Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, F-75005 Paris, France

59
JAX/README.md Normal file
View File

@ -0,0 +1,59 @@
Here is a repo for beginners in JAX. We recommand to start with the documentation in [1].
We are motivated by the article of Mohit and David(2025)[2], especially the automatic differentiation[3] and just-in-time compilation[4].
### Install JAX
GPU programming is a future trend for our open-source project. The codes that we write in CPU and GPU version of JAX are the same. The difference is that pip will install a jaxlib wheel for GPU version depending on NVIDIA driver version and CUDA version.
First we can check our NVIDIA driver version and CUDA version
```bash
nvidia-smi
```
CUDA 12 requires driver version ≥ 525, which is already a mainstream and stable combination, supported by almost all frameworks. We will install the JAX GPU version suitable for CUDA 12.
```bash
python3 -m venv JAX-venv
source JAX-venv/bin/activate
(JAX-venv) pip install --upgrade pip
(JAX-venv) pip install ipython
(JAX-venv) pip install --upgrade "jax[cuda12]"
(JAX-venv) ipython # /path/to/JAX-venv/bin/ipython
```
Test script in Ipython:
```
import jax
import jax.numpy as jnp
import jaxlib
print("jax:", jax.__version__)
print("jaxlib:", jaxlib.__version__)
print("devices:", jax.devices())
x = jnp.arange(5.)
print("x.device:", x.device)
```
Reference output:
```
jax: 0.6.2
jaxlib: 0.6.2
devices: [CudaDevice(id=0)]
x.device: cuda:0
```
Structure of the project:
```
JAX/
├─ JAX-venv/
├─ src/ # Python codes
├─ notebooks/ # Experimental notebook
├─ tests/ # Unit tests
└─ pyproject.toml # Or requirements.txt
```
### Source
[1] https://uvadlc-notebooks.readthedocs.io/en/latest/
[2] https://www.sciencedirect.com/science/article/pii/S0045782524008260?via%3Dihub
[3] https://docs.jax.dev/en/latest/automatic-differentiation.html
[4] https://docs.jax.dev/en/latest/jit-compilation.html

359
JAX/tests/JAX_GMM.py Normal file
View File

@ -0,0 +1,359 @@
"""JAX implementation of the generalized Maxwell contact solver.
This script mirrors the NumPy-based reference in
`Multi_branches_generalized_Maxwell.py`, but leverages JAX for automatic
differentiation and JIT compilation. The automatic gradient of the elastic
energy drives the constrained conjugate-gradient contact solver.
Running this file produces the same diagnostic plots as the reference
implementation while keeping all heavy lifting on the accelerator-enabled JAX
backend.
"""
from __future__ import annotations
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import jax
import jax.numpy as jnp
from jax import lax
import time
# Enable double precision for improved numerical stability.
jax.config.update("jax_enable_x64", True)
def build_fourier_kernel(n: int, m: int, L: float, E_star: float) -> jnp.ndarray:
"""Assemble the Fourier-domain kernel for the half-space Green's function."""
q_x = 2.0 * np.pi * jnp.fft.fftfreq(n, d=L / n)
q_y = 2.0 * np.pi * jnp.fft.fftfreq(m, d=L / m)
QX, QY = jnp.meshgrid(q_x, q_y, indexing="xy")
q_norm = jnp.sqrt(QX**2 + QY**2)
kernel = jnp.where(q_norm > 0.0, 2.0 / (E_star * q_norm), 0.0)
return kernel
@jax.jit
def displacement_from_pressure(
kernel_fourier: jnp.ndarray, pressure: jnp.ndarray
) -> jnp.ndarray:
"""Return the surface displacement induced by the supplied pressure field."""
pressure_fft = jnp.fft.fft2(pressure, norm="ortho")
displacement_fft = pressure_fft * kernel_fourier
displacement = jnp.fft.ifft2(displacement_fft, norm="ortho").real
return displacement
def elastic_energy(
kernel_fourier: jnp.ndarray, h_profile: jnp.ndarray, pressure: jnp.ndarray
) -> jnp.ndarray:
"""Elastic energy functional; its gradient yields the gap field."""
displacement = displacement_from_pressure(kernel_fourier, pressure)
stored = 0.5 * jnp.sum(pressure * displacement)
work = jnp.sum(pressure * h_profile)
return stored - work
value_and_grad_energy = jax.jit(jax.value_and_grad(elastic_energy, argnums=2))
@jax.jit
def project_total_load(pressure: jnp.ndarray, W: float, L: float) -> jnp.ndarray:
"""Project the pressure field onto the admissible set enforcing total load."""
mean_pressure = jnp.mean(pressure)
target = W / (L**2)
scale = jnp.where(mean_pressure > 0.0, target / mean_pressure, 0.0)
projected = jnp.where(mean_pressure > 0.0, pressure * scale, jnp.full_like(pressure, target))
return projected
@jax.jit
def masked_mean(values: jnp.ndarray, mask: jnp.ndarray) -> jnp.ndarray:
"""Compute the mean over the masked region, guarding against empty sets."""
count = jnp.sum(mask)
total = jnp.sum(jnp.where(mask, values, 0.0))
return jnp.where(count > 0, total / count, 0.0)
@jax.jit
def compute_error(
pressure: jnp.ndarray,
gradient: jnp.ndarray,
h_rms: float,
) -> jnp.ndarray:
"""Scaled complementarity error used as stopping criterion."""
num = jnp.vdot(pressure.reshape(-1), gradient - jnp.min(gradient))
denom = jnp.sum(pressure) * h_rms + 1e-12
return jnp.abs(num / denom)
@jax.jit
def update_search_direction(
gradient: jnp.ndarray,
direction: jnp.ndarray,
contact_mask: jnp.ndarray,
delta: float,
g_norm: float,
g_old: float,
) -> jnp.ndarray:
"""Conjugate-gradient style update with projection onto the contact set."""
beta_cg = jnp.where(g_old > 0.0, delta * g_norm / (g_old + 1e-12), 0.0)
updated = gradient + beta_cg * direction
return jnp.where(contact_mask, updated, 0.0)
def contact_solver_autodiff(
kernel_fourier: jnp.ndarray,
h_profile: jnp.ndarray,
W: float,
L: float,
tol: float = 1e-6,
iter_max: int = 200,
):
"""Solve the constrained contact problem via autodiff-powered CG iterations."""
h_rms = jnp.std(h_profile)
initial_pressure = jnp.full_like(h_profile, W / (L**2))
initial_direction = jnp.zeros_like(initial_pressure)
iter_max_jnp = jnp.array(iter_max)
def cond_fun(state):
_, _, _, _, k, error = state
return jnp.logical_and(error > tol, k < iter_max_jnp)
def body_fun(state):
pressure, direction, g_old, delta, k, _ = state
_, grad_energy = value_and_grad_energy(kernel_fourier, h_profile, pressure)
contact_mask = pressure > 0.0
grad_mean = masked_mean(grad_energy, contact_mask)
grad_centered = grad_energy - grad_mean
grad_contact = jnp.where(contact_mask, grad_centered, 0.0)
g_norm = jnp.sum(grad_contact * grad_contact)
search_dir = update_search_direction(
grad_contact,
direction,
contact_mask,
delta,
g_norm,
g_old,
)
displacement_dir = displacement_from_pressure(kernel_fourier, search_dir)
disp_mean = masked_mean(displacement_dir, contact_mask)
response = displacement_dir - disp_mean
tau_num = jnp.sum(jnp.where(contact_mask, grad_centered * search_dir, 0.0))
tau_den = jnp.sum(jnp.where(contact_mask, response * search_dir, 0.0))
tau = tau_num / (tau_den + 1e-12)
pressure_new = pressure - tau * search_dir
pressure_new = jnp.where(pressure_new > 0.0, pressure_new, 0.0)
inadmissible = jnp.logical_and(pressure_new == 0.0, grad_centered < 0.0)
delta_new = jnp.where(jnp.sum(inadmissible) == 0, 1.0, 0.0)
pressure_projected = project_total_load(pressure_new, W, L)
error_new = compute_error(pressure_projected, grad_centered, h_rms)
return (
pressure_projected,
search_dir,
jnp.where(g_norm > 0.0, g_norm, g_old),
delta_new,
k + 1,
error_new,
)
final_state = lax.while_loop(
cond_fun,
body_fun,
(
initial_pressure,
initial_direction,
jnp.array(1.0),
jnp.array(0.0),
jnp.array(0),
jnp.array(jnp.inf),
),
)
pressure, _, _, _, iterations, error = final_state
displacement = displacement_from_pressure(kernel_fourier, pressure)
return displacement, pressure, int(iterations), float(error)
def main():
# Time discretization
t0 = 0.0
t1 = 1.0
time_steps = 50
dt = (t1 - t0) / time_steps
# Total load
W = 1.0
# Geometry
L = 2.0
radius = 0.5
S = L**2
# Grid
n = 300
m = 300
x_vals = jnp.linspace(0.0, L, n, endpoint=False)
y_vals = jnp.linspace(0.0, L, m, endpoint=False)
x, y = jnp.meshgrid(x_vals, y_vals, indexing="xy")
x0 = 1.0
y0 = 1.0
E = 3.0
nu = 0.5
E_star = E / (1.0 - nu**2)
r = jnp.sqrt((x - x0) ** 2 + (y - y0) ** 2)
h_profile = -(r**2) / (2.0 * radius)
kernel_fourier = build_fourier_kernel(n, m, L, E_star)
# Maxwell model parameters
G_inf = 2.75
G_branches = jnp.array([2.75, 2.75])
tau_branches = jnp.array([0.1, 1.0])
eta_branches = G_branches * tau_branches
gamma = tau_branches / (tau_branches + dt)
G_tilde = jnp.sum(gamma * G_branches)
alpha = G_inf + G_tilde
beta = G_tilde
surface = h_profile
U = jnp.zeros((n, m))
M = jnp.zeros((G_branches.shape[0], n, m))
# Hertzian references
G_maxwell_t0 = jnp.sum(G_branches)
G_effective_t0 = G_inf + G_maxwell_t0
E_effective_t0 = 2.0 * G_effective_t0 * (1.0 + nu) / (1.0 - nu**2)
p0_t0 = (6.0 * W * (E_effective_t0**2) / (np.pi**3 * radius**2)) ** (1.0 / 3.0)
a_t0 = (3.0 * W * radius / (4.0 * E_effective_t0)) ** (1.0 / 3.0)
E_effective_inf = 2.0 * G_inf * (1.0 + nu) / (1.0 - nu**2)
p0_t_inf = (6.0 * W * (E_effective_inf**2) / (np.pi**3 * radius**2)) ** (1.0 / 3.0)
a_t_inf = (3.0 * W * radius / (4.0 * E_effective_inf)) ** (1.0 / 3.0)
pressure_distributions = []
contact_areas = []
iteration_log = []
start_time = time.perf_counter()
# I think I should avoid using for loops in JAX
for step in range(time_steps):
M_maxwell = jnp.tensordot(gamma, M, axes=1)
H_new = alpha * surface - beta * U + M_maxwell
displacement, pressure, iterations, residual = contact_solver_autodiff(
kernel_fourier,
H_new,
W,
L,
tol=1e-6,
iter_max=200,
)
U_new = (displacement - M_maxwell + beta * U) / alpha
delta_U = U_new - U
M = gamma[:, None, None] * (M + G_branches[:, None, None] * delta_U)
area_ratio = jnp.mean(pressure > 0.0)
contact_area = float(area_ratio * S)
contact_areas.append(contact_area)
pressure_midline = np.array(jax.device_get(pressure[n // 2]))
pressure_distributions.append(pressure_midline)
iteration_log.append((iterations, residual))
U = U_new
end_time = time.perf_counter()
print("Simulation time:", end_time - start_time, "seconds")
x_np = np.array(jax.device_get(x))
def update(frame):
ax.clear()
ax.set_xlim(0, L)
ax.set_ylim(0, 1.1 * p0_t0)
ax.grid(True)
ax.plot(
x_np[n // 2],
p0_t0 * np.sqrt(np.maximum(0.0, 1.0 - (x_np[n // 2] - x0) ** 2 / a_t0**2)),
"g--",
label="Hertz t=0",
)
ax.plot(
x_np[n // 2],
p0_t_inf * np.sqrt(np.maximum(0.0, 1.0 - (x_np[n // 2] - x0) ** 2 / a_t_inf**2)),
"b--",
label="Hertz t=inf",
)
ax.plot(x_np[n // 2], pressure_distributions[frame], "r-", label="Numerical")
ax.set_title(f"Time = {t0 + frame * dt:.2f}s")
ax.set_xlabel("x")
ax.set_ylabel("Pressure distribution")
ax.legend(loc="upper right")
fig, ax = plt.subplots()
ani = FuncAnimation(fig, update, frames=len(pressure_distributions), repeat=False)
plt.show()
Ac_hertz_t0 = np.pi * a_t0**2
Ac_hertz_t_inf = np.pi * a_t_inf**2
print("Iterations and residuals per step:")
for idx, (iterations, residual) in enumerate(iteration_log):
print(f" step {idx:02d}: {iterations:3d} iterations, residual={residual:.3e}")
print("Analytical contact area radius at t0:", float(a_t0))
print("Analytical contact area radius at t_inf:", float(a_t_inf))
print("Analytical maximum pressure at t0:", float(p0_t0))
print("Analytical maximum pressure at t_inf:", float(p0_t_inf))
print("Numerical contact area at t0:", contact_areas[0])
print("Numerical contact area at t_inf:", contact_areas[-1])
print("Analytical contact area at t0:", float(Ac_hertz_t0))
print("Analytical contact area at t_inf:", float(Ac_hertz_t_inf))
time_axis = np.arange(t0, t1, dt)
plt.figure()
plt.plot(time_axis, contact_areas)
plt.axhline(Ac_hertz_t0, color="red", linestyle="dotted")
plt.axhline(Ac_hertz_t_inf, color="blue", linestyle="dotted")
plt.xlabel("Time(s)")
plt.ylabel("Contact area($m^2$)")
plt.legend(["Numerical", "Hertz at t=0", "Hertz at t=inf"])
plt.title("Contact area vs time for multi-branch Generalized Maxwell model")
plt.show()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,348 @@
"""JAX generalized Maxwell contact solver without Python loops.
This variant removes the explicit Python time-stepping loop from
`JAX_GMM.py` by relying on `jax.lax.scan`, which keeps all temporally
coupled computations staged inside JAX's computation graph. The contact
solver remains identical but is compatible with scanning so the entire
transient solves as a single JIT-compiled program once the graph is
traced.
"""
from __future__ import annotations
import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import jax
import jax.numpy as jnp
from jax import lax
jax.config.update("jax_enable_x64", True)
def build_fourier_kernel(n: int, m: int, L: float, E_star: float) -> jnp.ndarray:
q_x = 2.0 * jnp.pi * jnp.fft.fftfreq(n, d=L / n)
q_y = 2.0 * jnp.pi * jnp.fft.fftfreq(m, d=L / m)
QX, QY = jnp.meshgrid(q_x, q_y, indexing="xy")
q_norm = jnp.sqrt(QX**2 + QY**2)
return jnp.where(q_norm > 0.0, 2.0 / (E_star * q_norm), 0.0)
@jax.jit
def displacement_from_pressure(kernel_fourier: jnp.ndarray, pressure: jnp.ndarray) -> jnp.ndarray:
pressure_fft = jnp.fft.fft2(pressure, norm="ortho")
displacement_fft = pressure_fft * kernel_fourier
return jnp.fft.ifft2(displacement_fft, norm="ortho").real
def elastic_energy(kernel_fourier: jnp.ndarray, h_profile: jnp.ndarray, pressure: jnp.ndarray) -> jnp.ndarray:
displacement = displacement_from_pressure(kernel_fourier, pressure)
stored = 0.5 * jnp.sum(pressure * displacement)
work = jnp.sum(pressure * h_profile)
return stored - work
value_and_grad_energy = jax.jit(jax.value_and_grad(elastic_energy, argnums=2))
@jax.jit
def project_total_load(pressure: jnp.ndarray, W: float, L: float) -> jnp.ndarray:
mean_pressure = jnp.mean(pressure)
target = W / (L**2)
scale = jnp.where(mean_pressure > 0.0, target / mean_pressure, 0.0)
return jnp.where(mean_pressure > 0.0, pressure * scale, jnp.full_like(pressure, target))
@jax.jit
def masked_mean(values: jnp.ndarray, mask: jnp.ndarray) -> jnp.ndarray:
count = jnp.sum(mask)
total = jnp.sum(jnp.where(mask, values, 0.0))
return jnp.where(count > 0, total / count, 0.0)
@jax.jit
def compute_error(pressure: jnp.ndarray, gradient: jnp.ndarray, h_rms: float) -> jnp.ndarray:
num = jnp.vdot(pressure.reshape(-1), gradient - jnp.min(gradient))
denom = jnp.sum(pressure) * h_rms + 1e-12
return jnp.abs(num / denom)
@jax.jit
def update_search_direction(
gradient: jnp.ndarray,
direction: jnp.ndarray,
contact_mask: jnp.ndarray,
delta: float,
g_norm: float,
g_old: float,
) -> jnp.ndarray:
beta_cg = jnp.where(g_old > 0.0, delta * g_norm / (g_old + 1e-12), 0.0)
updated = gradient + beta_cg * direction
return jnp.where(contact_mask, updated, 0.0)
def contact_solver_autodiff(
kernel_fourier: jnp.ndarray,
h_profile: jnp.ndarray,
W: float,
L: float,
tol: float = 1e-6,
iter_max: int = 200,
):
h_rms = jnp.std(h_profile)
initial_pressure = jnp.full_like(h_profile, W / (L**2))
initial_direction = jnp.zeros_like(initial_pressure)
iter_max_jnp = jnp.array(iter_max)
def cond_fun(state):
_, _, _, _, k, error = state
return jnp.logical_and(error > tol, k < iter_max_jnp)
def body_fun(state):
pressure, direction, g_old, delta, k, _ = state
_, grad_energy = value_and_grad_energy(kernel_fourier, h_profile, pressure)
contact_mask = pressure > 0.0
grad_mean = masked_mean(grad_energy, contact_mask)
grad_centered = grad_energy - grad_mean
grad_contact = jnp.where(contact_mask, grad_centered, 0.0)
g_norm = jnp.sum(grad_contact * grad_contact)
search_dir = update_search_direction(grad_contact, direction, contact_mask, delta, g_norm, g_old)
displacement_dir = displacement_from_pressure(kernel_fourier, search_dir)
disp_mean = masked_mean(displacement_dir, contact_mask)
response = displacement_dir - disp_mean
tau_num = jnp.sum(jnp.where(contact_mask, grad_centered * search_dir, 0.0))
tau_den = jnp.sum(jnp.where(contact_mask, response * search_dir, 0.0))
tau = tau_num / (tau_den + 1e-12)
pressure_new = jnp.maximum(pressure - tau * search_dir, 0.0)
inadmissible = jnp.logical_and(pressure_new == 0.0, grad_centered < 0.0)
delta_new = jnp.where(jnp.sum(inadmissible) == 0, 1.0, 0.0)
pressure_projected = project_total_load(pressure_new, W, L)
error_new = compute_error(pressure_projected, grad_centered, h_rms)
return (
pressure_projected,
search_dir,
jnp.where(g_norm > 0.0, g_norm, g_old),
delta_new,
k + 1,
error_new,
)
final_state = lax.while_loop(
cond_fun,
body_fun,
(
initial_pressure,
initial_direction,
jnp.array(1.0),
jnp.array(0.0),
jnp.array(0),
jnp.array(jnp.inf),
),
)
pressure, _, _, _, iterations, error = final_state
displacement = displacement_from_pressure(kernel_fourier, pressure)
return displacement, pressure, iterations, error
def run_simulation():
t0 = 0.0
t1 = 1.0
time_steps = 50
dt = (t1 - t0) / time_steps
W = 1.0
L = 2.0
radius = 0.5
S = L**2
n = 300
m = 300
x_vals = jnp.linspace(0.0, L, n, endpoint=False)
y_vals = jnp.linspace(0.0, L, m, endpoint=False)
x, y = jnp.meshgrid(x_vals, y_vals, indexing="xy")
x0 = 1.0
y0 = 1.0
E = 3.0
nu = 0.5
E_star = E / (1.0 - nu**2)
r = jnp.sqrt((x - x0) ** 2 + (y - y0) ** 2)
h_profile = -(r**2) / (2.0 * radius)
kernel_fourier = build_fourier_kernel(n, m, L, E_star)
G_inf = 2.75
G_branches = jnp.array([2.75, 2.75])
tau_branches = jnp.array([0.1, 1.0])
gamma = tau_branches / (tau_branches + dt)
G_tilde = jnp.sum(gamma * G_branches)
alpha = G_inf + G_tilde
beta = G_tilde
surface = h_profile
U0 = jnp.zeros((n, m))
M0 = jnp.zeros((G_branches.shape[0], n, m))
def scan_step(carry, _):
U, M = carry
M_maxwell = jnp.tensordot(gamma, M, axes=1)
H_new = alpha * surface - beta * U + M_maxwell
displacement, pressure, iterations, residual = contact_solver_autodiff(
kernel_fourier,
H_new,
W,
L,
tol=1e-6,
iter_max=200,
)
U_new = (displacement - M_maxwell + beta * U) / alpha
delta_U = U_new - U
M_new = gamma[:, None, None] * (M + G_branches[:, None, None] * delta_U)
midline = pressure[n // 2]
contact_area = jnp.mean(pressure > 0.0) * S
return (U_new, M_new), (midline, contact_area, iterations, residual)
(_, _), outputs = lax.scan(
scan_step,
(U0, M0),
xs=None,
length=time_steps,
)
midlines, contact_areas, iterations, residuals = outputs
G_maxwell_t0 = jnp.sum(G_branches)
G_effective_t0 = G_inf + G_maxwell_t0
E_effective_t0 = 2.0 * G_effective_t0 * (1.0 + nu) / (1.0 - nu**2)
p0_t0 = (6.0 * W * (E_effective_t0**2) / (jnp.pi**3 * radius**2)) ** (1.0 / 3.0)
a_t0 = (3.0 * W * radius / (4.0 * E_effective_t0)) ** (1.0 / 3.0)
E_effective_inf = 2.0 * G_inf * (1.0 + nu) / (1.0 - nu**2)
p0_t_inf = (6.0 * W * (E_effective_inf**2) / (jnp.pi**3 * radius**2)) ** (1.0 / 3.0)
a_t_inf = (3.0 * W * radius / (4.0 * E_effective_inf)) ** (1.0 / 3.0)
return {
"x": x,
"midlines": midlines,
"contact_areas": contact_areas,
"iterations": iterations,
"residuals": residuals,
"params": {
"t0": t0,
"dt": dt,
"L": L,
"radius": radius,
"x0": x0,
"p0_t0": p0_t0,
"p0_t_inf": p0_t_inf,
"a_t0": a_t0,
"a_t_inf": a_t_inf,
"S": S,
},
}
def main():
start_time = time.perf_counter()
results = run_simulation()
total_time = time.perf_counter() - start_time
print("Simulation time:", total_time, "seconds")
x = jax.device_get(results["x"])
midlines = jax.device_get(results["midlines"])
contact_areas = jax.device_get(results["contact_areas"])
iterations = jax.device_get(results["iterations"]).astype(int)
residuals = jax.device_get(results["residuals"])
params = results["params"]
t0 = float(params["t0"])
dt = float(params["dt"])
L = float(params["L"])
x0 = float(params["x0"])
p0_t0 = float(params["p0_t0"])
p0_t_inf = float(params["p0_t_inf"])
a_t0 = float(params["a_t0"])
a_t_inf = float(params["a_t_inf"])
S = float(params["S"])
time_axis = t0 + dt * jnp.arange(midlines.shape[0])
time_axis_np = jax.device_get(time_axis)
def update(frame):
ax.clear()
ax.set_xlim(0, L)
ax.set_ylim(0, 1.1 * p0_t0)
ax.grid(True)
x_mid = x[int(x.shape[0] / 2)]
ax.plot(
x_mid,
p0_t0 * np.sqrt(np.maximum(0.0, 1.0 - (x_mid - x0) ** 2 / a_t0**2)),
"g--",
label="Hertz t=0",
)
ax.plot(
x_mid,
p0_t_inf * np.sqrt(np.maximum(0.0, 1.0 - (x_mid - x0) ** 2 / a_t_inf**2)),
"b--",
label="Hertz t=inf",
)
ax.plot(x_mid, midlines[frame], "r-", label="Numerical")
ax.set_title(f"Time = {t0 + frame * dt:.2f}s")
ax.set_xlabel("x")
ax.set_ylabel("Pressure distribution")
ax.legend(loc="upper right")
fig, ax = plt.subplots()
ani = FuncAnimation(fig, update, frames=midlines.shape[0], repeat=False)
plt.show()
Ac_hertz_t0 = jnp.pi * a_t0**2
Ac_hertz_t_inf = jnp.pi * a_t_inf**2
print("Iterations and residuals per step:")
for idx, (its, res) in enumerate(zip(iterations, residuals)):
print(f" step {idx:02d}: {its:3d} iterations, residual={res:.3e}")
print("Analytical contact area at t0:", float(Ac_hertz_t0))
print("Analytical contact area at t_inf:", float(Ac_hertz_t_inf))
print("Numerical contact area at t0:", float(contact_areas[0]))
print("Numerical contact area at t_inf:", float(contact_areas[-1]))
plt.figure()
plt.plot(time_axis_np, contact_areas)
plt.axhline(Ac_hertz_t0, color="red", linestyle="dotted")
plt.axhline(Ac_hertz_t_inf, color="blue", linestyle="dotted")
plt.xlabel("Time(s)")
plt.ylabel("Contact area($m^2$)")
plt.legend(["Numerical", "Hertz at t=0", "Hertz at t=inf"])
plt.title("Contact area vs time for multi-branch Generalized Maxwell model")
plt.show()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,294 @@
### This script is for the Maxwell multi-branch model.
### Deduce process is in generalized_Maxwell_backward_Euler.ipynb
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import time
#define input parameters
##time
t0 = 0
t1 = 1
time_steps = 50
dt = (t1 - t0)/time_steps
##load(constant)
W = 1e0 # Total load
#domain size
#R = 1 # Radius of demi-sphere
L = 2 # Domain size
Radius = 0.5
S = L**2 # Domain area
# Generate a 2D coordinate space
n = 300
m = 300
x, y = np.meshgrid(np.linspace(0, L, n, endpoint=False), np.linspace(0, L, m, endpoint=False))
x0 = 1
y0 = 1
E = 3 # Young's modulus
nu = 0.5
E_star = E / (1 - nu**2) # Plane strain modulus
##################################################################
#####First just apply for demi-sphere and compare with Hertz######
##################################################################
# We define the distance from the center of the sphere
r = np.sqrt((x-x0)**2 + (y-y0)**2)
# Define the kernel in the Fourier domain
q_x = 2 * np.pi * np.fft.fftfreq(n, d=L/n)
q_y = 2 * np.pi * np.fft.fftfreq(m, d=L/m)
QX, QY = np.meshgrid(q_x, q_y)
kernel_fourier = np.zeros_like(QX)
kernel_fourier = 2 / (E_star * np.sqrt(QX**2 + QY**2))
kernel_fourier[0, 0] = 0 # Avoid division by zero at the zero frequency
h_profile = -(r**2)/(2*Radius)
def apply_integration_operator(Origin, kernel_fourier, h_profile):
# Compute the Fourier transform of the input image
Origin2fourier = np.fft.fft2(Origin, norm='ortho')
Middle_fourier = Origin2fourier * kernel_fourier
Middle = np.fft.ifft2(Middle_fourier, norm='ortho').real
Gradient = Middle - h_profile
return Gradient, Origin2fourier#true gradient
##define our elastic solver with constrained conjuagte gradient method
def contact_solver(n, m, W, S, h_profile, tol=1e-6, iter_max=200):
# Initial pressure distribution
P = np.full((n, m), W / S) # Initial guess for the pressure
#initialize the search direction
T = np.zeros((n, m))
#set the norm of surface(to normalze the error)
h_rms = np.std(h_profile)
#initialize G_norm and G_old
G_norm = 0
G_old = 1
#initialize delta
delta = 0
# Initialize variables for the iteration
k = 0 # Iteration counter
error = np.inf # Initialize error
h_rms = np.std(h_profile)
while np.abs(error) > tol and k < iter_max:
S = P > 0
G, P_fourier = apply_integration_operator(P, kernel_fourier, h_profile)
G -= G[S].mean()
G_norm = np.linalg.norm(G[S])**2
# Calculate the search direction
T[S] = G[S] + delta * G_norm / G_old * T[S]
T[~S] = 0 ## out of contact area, dont need to update
# Update G_old
G_old = G_norm
# Set R
R, T_fourier = apply_integration_operator(T, kernel_fourier, h_profile)
R += h_profile
R -= R[S].mean()
# Calculate the step size tau
tau = np.vdot(G[S], T[S]) / np.vdot(R[S], T[S])
# Update P
P -= tau * T
P *= P > 0
# identify the inadmissible points
R = (P == 0) & (G < 0)
if R.sum() == 0:
delta = 1
else:
delta = 0#change the contact point set and need to do conjugate gradient again
# Enforce the applied force constraint
P = W * P / np.mean(P) / L**2
# Calculate the error for convergence checking
error = np.vdot(P, (G - np.min(G))) / (P.sum()*h_rms)
# print(delta, error, k, np.mean(P), np.mean(P>0), tau)
k += 1 # Increment the iteration counter
# Ensure a positive gap by updating G
G = G - np.min(G)
displacement_fourier = P_fourier * kernel_fourier
displacement = np.fft.ifft2(displacement_fourier, norm='ortho').real
return displacement, P
##################################################################
#####shear modulus for multi-branch Maxwell model###################
##################################################################
G_inf = 2.75 #elastic branch
#G = [2.75, 2, 0.25, 10, 2.5] #viscoelastic branch
G = [2.75, 2.75]
print('G_inf:', G_inf, ' G: ' + str(G))
# Define the relaxation times
#tau = [0.1, 0.5, 1, 2, 10] # relaxation times
tau = [0.1, 1]
#tau = [0, 0, 0, 0, 0]
#tau = [1e6,1e6,1e6,1e6,1e6]
eta = [g * t for g, t in zip(G, tau)]
print('tau:', tau, ' eta:', eta)
##################################################################
#####define G_tilde for one-branch Maxwell model #################
##################################################################
G_tilde = 0
for k in range(len(G)):
G_tilde += tau[k] / (tau[k] + dt) * G[k]
# Define parameters for updating the surface profile
alpha = G_inf + G_tilde
beta = G_tilde
gamma = []
for k in range(len(G)):
gamma.append(tau[k]/(tau[k] + dt))
Surface = h_profile
U = np.zeros((n, m))
M = np.zeros((len(G), n, m))
Ac=[]
M_maxwell = np.zeros_like(U)
#######################################
###Hertzian contact theory reference
#######################################
##Hertz solution at t0
G_maxwell_t0 = 0
for k in range(len(G)):
G_maxwell_t0 += G[k]
G_effective_t0 = G_inf + G_maxwell_t0
E_effective_t0 = 2*G_effective_t0*(1+nu)/(1-nu**2)
p0_t0 = (6*W*(E_effective_t0)**2/(np.pi**3*Radius**2))**(1/3)
a_t0 = (3*W*Radius/(4*(E_effective_t0)))**(1/3)
##Hertz solution at t_inf
E_effective_inf = 2*G_inf*(1+nu)/(1-nu**2)
p0_t_inf = (6*W*(E_effective_inf)**2/(np.pi**3*Radius**2))**(1/3)
a_t_inf = (3*W*Radius/(4*(E_effective_inf)))**(1/3)
# define the update function for the animation
def update(frame):
ax.clear()
ax.set_xlim(0, L)
ax.set_ylim(0, 1.1*p0_t0)
ax.grid()
# draw Hertzian contact theory reference
ax.plot(x[n//2], p0_t0*np.sqrt(1 - (x[n//2]-x0)**2 / a_t0**2), 'g--', label='Hertz at t=0')
ax.plot(x[n//2], p0_t_inf*np.sqrt(1 - (x[n//2]-x0)**2 / a_t_inf**2), 'b--', label='Hertz at t=inf')
# draw numerical solution at current time step
ax.plot(x[n//2], pressure_distributions[frame], 'r-', label='Numerical')
ax.set_title(f"Time = {t0 + frame * dt:.2f}s")
plt.xlabel("x")
plt.ylabel("Pressure distribution")
plt.legend()
start = time.perf_counter()
# collect pressure distributions at each time step
pressure_distributions = []
for t in np.arange(t0, t1, dt):
#Update the surface profile
M_maxwell[:] = 0
for k in range(len(G)):
M_maxwell += gamma[k]*M[k]
H_new = alpha*Surface - beta*U + M_maxwell
#main step1: Compute $P_{t+\Delta t}^{\prime}$
#M_new, P = contact_solver(n, m, W, S, H_new, tol=1e-6, iter_max=200)
M_new, P = contact_solver(n, m, W, S, H_new, tol=1e-6, iter_max=200)
##Sanity check??
##main step2: Update global displacement
U_new = (1/alpha)*(M_new - M_maxwell + beta*U)
#main step3: Update the pressure
for k in range(len(G)):
M[k] = gamma[k]*(M[k] + G[k]*(U_new - U))
#only maxwell branch, see algorithm formula 1 in the notebook
Ac.append(np.mean(P > 0)*S)
#main step4: Update the total displacement field
U = U_new
pressure_distributions.append(P[n//2].copy()) # store the pressure distribution at each time step
end = time.perf_counter()
print("Simulation time:", end - start, "seconds")
# create a figure and axis
fig, ax = plt.subplots()
# create an animation
ani = FuncAnimation(fig, update, frames=len(pressure_distributions), repeat=False)
plt.show()
Ac_hertz_t0 = np.pi*a_t0**2
Ac_hertz_t_inf = np.pi*a_t_inf**2
print("Analytical contact area radius at t0:", a_t0)
print("Analytical contact area radius at t_inf:", a_t_inf)
print("Analytical maximum pressure at t0:", p0_t0)
print("Analytical maximum pressure at t_inf:", p0_t_inf)
print("Numerical contact area at t0:", Ac[0])
print("Numerical contact area at t_inf", Ac[-1])
print("Analyical contact area at t0:", Ac_hertz_t0)
print("Analyical contact area at t_inf:", Ac_hertz_t_inf)
plt.plot(np.arange(t0, t1, dt), Ac)
plt.axhline(Ac_hertz_t0, color='red', linestyle='dotted')
plt.axhline(Ac_hertz_t_inf, color='blue', linestyle='dotted')
plt.xlabel("Time(s)")
plt.ylabel("Contact area($m^2$)")
plt.legend(["Numerical", "Hertz at t=0", "Hertz at t=inf"])
#define a title that can read parameter tau_0
plt.title("Contact area vs time for multi-branch Generalized Maxwell model")
#plt.axhline(Ac_hertz_t_inf, color='blue')
plt.show()

70
JAX/tests/Tamaas_GMM.py Normal file
View File

@ -0,0 +1,70 @@
'''
Here we test a Hertzian contact on a generalized Maxwell material using Tamaas.
Contact with rough surfaces needs to be tested.
'''
import tamaas as tm
import time
import numpy as np
# Set-up of the model
L = 2
Radius = 0.5
S = L**2
# discretization
n = m = 300
x = np.linspace(0, L, n, endpoint=False, dtype=tm.dtype)
y = np.linspace(0, L, m, endpoint=False, dtype=tm.dtype)
xx, yy = np.meshgrid(x, y, indexing="ij")
# Define the surface
surface = surface = -((xx - L / 2) ** 2 + (yy - L / 2) ** 2) / (2 * Radius)
# Create the model
model = tm.Model(tm.model_type.basic_2d, [L, L], [n, m])
# Defining the elastic branch (i.e. the behavior at t = ∞)
model.E = 3
model.nu = 0.5
# Characteristic times of the relaxation function
times = [0.1, 1]
# Shear moduli for each branch of the model
shear_moduli = [2.75, 2.75]
t0 = 0
t1 = 1
time_steps = 50
# Time step
Δt = (t1 - t0) / time_steps
# Applied load
W = 1.0
load = W / S
# Solver instanciation
solver = tm.MaxwellViscoelastic(model, surface, 1e-10,
time_step=Δt,
shear_moduli=shear_moduli,
characteristic_times=times)
# Solve one timestep with given load
start = time.perf_counter()
solver.solve(load)
end = time.perf_counter()
print(f'Simulation time for one step: {end - start} seconds')
# plot like ub Multi_branches_generalized_Maxwell.py
import matplotlib.pyplot as plt
displacement = model.displacement[:]
pressure = model.traction[:]
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.imshow(displacement, extent=(0, L, 0, L), origin='lower')
plt.title('Displacement field')
plt.colorbar()
plt.subplot(1, 2, 2)
plt.imshow(pressure, extent=(0, L, 0, L), origin='lower')
plt.title('Pressure field')
plt.colorbar()
plt.show()

33
JAX/tests/test.py Normal file
View File

@ -0,0 +1,33 @@
'''
This is a test file for JAX functionalities. Codes are from Jax documentation.(https://jax.readthedocs.io/en/latest/index.html)
'''
import jax
import jax.numpy as jnp
from jax import grad, jit
# Example: JIT compilation
def selu(x, alpha=1.67, lambda_=1.05):
return lambda_ * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
x = jnp.arange(1000000)
import time
# measure a single execution and ensure JAX computation completes
start = time.perf_counter()
selu(x).block_until_ready()
end = time.perf_counter()
print("Elapsed:", end - start)
selu_jit = jit(selu)
# measure a single execution and ensure JAX computation completes
start = time.perf_counter()
selu_jit(x).block_until_ready()
end = time.perf_counter()
print("Elapsed with JIT:", end - start)
# Example: Automatic differentiation\
def f(x):
return jnp.sin(x) + 0.5 * x ** 2
df = grad(f)
x = 2.0
print("f'(2.0) =", df(x)) # Should print the derivative of f at x=2.0