283 lines
6.3 KiB
Plaintext
283 lines
6.3 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f18c4520",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Problème"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a911f63f",
|
||
"metadata": {},
|
||
"source": [
|
||
"Nous allons anayser les données de l'expérience de la figure"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "bf4e3b36",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<img src=\"experience.png\" width=\"500\" height=\"500\"/>"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Image object>"
|
||
]
|
||
},
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# import image module\n",
|
||
"from IPython.display import Image\n",
|
||
" \n",
|
||
"# get the image\n",
|
||
"Image(url=\"experience.png\", width=500, height=500)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ecffdbd7",
|
||
"metadata": {},
|
||
"source": [
|
||
" Une bille supposée ponctuelle avec une vitesse horizontale $V_0$ tombe d'une table de hauteur $H$ et rencontre le sol à une longueur $L$.\n",
|
||
"\n",
|
||
"Nous disposons de deux fichiers de mesures expérimentales (fichiers formatés csv séparés par des \";\")\n",
|
||
"- \"V1msHvariable.csv\" expérience de mesure de la longueur $L$ à vitesse $V_0=1 \\ m/s$ constante pour des différentes hauteurs $H$ avec l'erreur correspondante\n",
|
||
"- \"H1mVvariable.csv\" expérience de mesure de la longueur $L$ à hauteur $H= 1 \\ m$ constante pour des différentes vitesses $V_0$ avec l'erreur correspondante\n",
|
||
"\n",
|
||
"On propose un modèle pour la longueur $L$\n",
|
||
"\n",
|
||
"$$ L = C V_0^\\alpha H^\\beta $$\n",
|
||
"\n",
|
||
"nous allons évaluer les coefficients $\\alpha$ et $\\beta$, ainsi que la constante $C$."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "def2a595",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Bibliothèques nécessaires"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "6eb47ffa",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"from scipy.optimize import curve_fit"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f60f3bdf",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Partie 1\n",
|
||
"Etude de la longueur 𝐿 à vitesse $𝑉_0=1 \\ 𝑚/𝑠$ constante pour des différentes hauteurs 𝐻"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d135c405",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 1.1\n",
|
||
"En utilisant la bibliothèque Pandas, lisez le fichier \"V1msHvariable.csv\" et définisez les variables $L$, $H$, \n",
|
||
"et $erreur$ (de la mesure de hauteur)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "96e320c8",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d7a43f3e",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 1.2\n",
|
||
"Faites une figure de $L$ vs $H$ avec barres d'erreur"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "358a3d61",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c7139233",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 1.3\n",
|
||
"Utilisez la fonction \"curve_fit\" pour faire une regression linéaire des données exprimées en une échelle log-log\n",
|
||
"et trouve la valeur de $\\alpha$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "2dbb6367",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "70ed4d67",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 1.4\n",
|
||
"Faites un figure log-log de $L$ vs $H$ en ajoutant la regression linéaire trouvée dans le point précédent"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "83e8da5f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8691357e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Partie 2\n",
|
||
"Etude de la longueur $L$ à hauteur $H= 1 \\ m$ constante pour des différentes vitesses $V_0$ "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8dde6329",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 2.1\n",
|
||
"En utilisant la bibliothèque Pandas, lisez le fichier \"H1mVvariable.csv\" et définisez les variables $L$, $V_0$, \n",
|
||
"et $erreur$ (de la mesure de vitesse)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ec90d54e",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b5f8fbca",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 2.2\n",
|
||
"Faites une figure de $L$ vs $V_0$ avec barres d'erreur"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "a37afbd6",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "94d89467",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 2.3\n",
|
||
"Utilisez la fonction \"curve_fit\" pour faire une regression linéaire des données exprimées en une échelle log-log\n",
|
||
"et trouve la valeur de $\\beta$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "53017788",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a61554ae",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Point 2.4\n",
|
||
"Faites un figure log-log de $L$ vs $V_0$ en ajoutant la regression linéaire trouvée dans le point précédent"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "e62b8263",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7f2178cf",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Partie 3 (optative)\n",
|
||
"Donnez une estimation de la constante $C$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "2cff8e1c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|