add example + solution
This commit is contained in:
parent
4927c18f87
commit
18f52ba95a
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,282 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f18c4520",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Problème"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a911f63f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Nous allons anayser les données de l'expérience de la figure"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "bf4e3b36",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<img src=\"experience.png\" width=\"500\" height=\"500\"/>"
|
||||
],
|
||||
"text/plain": [
|
||||
"<IPython.core.display.Image object>"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# import image module\n",
|
||||
"from IPython.display import Image\n",
|
||||
" \n",
|
||||
"# get the image\n",
|
||||
"Image(url=\"experience.png\", width=500, height=500)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ecffdbd7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
" Une bille supposée ponctuelle avec une vitesse horizontale $V_0$ tombe d'une table de hauteur $H$ et rencontre le sol à une longueur $L$.\n",
|
||||
"\n",
|
||||
"Nous disposons de deux fichiers de mesures expérimentales (fichiers formatés csv séparés par des \";\")\n",
|
||||
"- \"V1msHvariable.csv\" expérience de mesure de la longueur $L$ à vitesse $V_0=1 \\ m/s$ constante pour des différentes hauteurs $H$ avec l'erreur correspondante\n",
|
||||
"- \"H1mVvariable.csv\" expérience de mesure de la longueur $L$ à hauteur $H= 1 \\ m$ constante pour des différentes vitesses $V_0$ avec l'erreur correspondante\n",
|
||||
"\n",
|
||||
"On propose un modèle pour la longueur $L$\n",
|
||||
"\n",
|
||||
"$$ L = C V_0^\\alpha H^\\beta $$\n",
|
||||
"\n",
|
||||
"nous allons évaluer les coefficients $\\alpha$ et $\\beta$, ainsi que la constante $C$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "def2a595",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Bibliothèques nécessaires"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "6eb47ffa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from scipy.optimize import curve_fit"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f60f3bdf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Partie 1\n",
|
||||
"Etude de la longueur 𝐿 à vitesse $𝑉_0=1 \\ 𝑚/𝑠$ constante pour des différentes hauteurs 𝐻"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d135c405",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 1.1\n",
|
||||
"En utilisant la bibliothèque Pandas, lisez le fichier \"V1msHvariable.csv\" et définisez les variables $L$, $H$, \n",
|
||||
"et $erreur$ (de la mesure de hauteur)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "96e320c8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d7a43f3e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 1.2\n",
|
||||
"Faites une figure de $L$ vs $H$ avec barres d'erreur"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "358a3d61",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c7139233",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 1.3\n",
|
||||
"Utilisez la fonction \"curve_fit\" pour faire une regression linéaire des données exprimées en une échelle log-log\n",
|
||||
"et trouve la valeur de $\\alpha$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2dbb6367",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "70ed4d67",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 1.4\n",
|
||||
"Faites un figure log-log de $L$ vs $H$ en ajoutant la regression linéaire trouvée dans le point précédent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "83e8da5f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8691357e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Partie 2\n",
|
||||
"Etude de la longueur $L$ à hauteur $H= 1 \\ m$ constante pour des différentes vitesses $V_0$ "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8dde6329",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 2.1\n",
|
||||
"En utilisant la bibliothèque Pandas, lisez le fichier \"H1mVvariable.csv\" et définisez les variables $L$, $V_0$, \n",
|
||||
"et $erreur$ (de la mesure de vitesse)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ec90d54e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b5f8fbca",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 2.2\n",
|
||||
"Faites une figure de $L$ vs $V_0$ avec barres d'erreur"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a37afbd6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "94d89467",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 2.3\n",
|
||||
"Utilisez la fonction \"curve_fit\" pour faire une regression linéaire des données exprimées en une échelle log-log\n",
|
||||
"et trouve la valeur de $\\beta$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "53017788",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a61554ae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Point 2.4\n",
|
||||
"Faites un figure log-log de $L$ vs $V_0$ en ajoutant la regression linéaire trouvée dans le point précédent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e62b8263",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7f2178cf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Partie 3 (optative)\n",
|
||||
"Donnez une estimation de la constante $C$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2cff8e1c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
L;V;error
|
||||
0.45;1.00;0.10
|
||||
0.54;1.20;0.10
|
||||
0.67;1.50;0.10
|
||||
0.89;2.00;0.10
|
||||
1.34;3.00;0.10
|
|
|
@ -0,0 +1,6 @@
|
|||
L;H;error
|
||||
0.40;0.80;0.01
|
||||
0.42;0.90;0.01
|
||||
0.45;1.00;0.01
|
||||
0.47;1.10;0.01
|
||||
0.49;1.20;0.01
|
|
Binary file not shown.
After Width: | Height: | Size: 194 KiB |
Loading…
Reference in New Issue